660 research outputs found

    Planeamiento urbano

    Get PDF

    Are Facial Displays Social? Situational Influences in the Attribution of Emotion to Facial Expressions.

    Get PDF
    Sin resumenSin resume

    Saturn's neutral torus versus Jupiter's plasma torus

    Get PDF
    With the recent discovery of an atmospheric plume of H2O it is thought that Enceladus could deliver as much a 300 kg/s of neutral gas to Saturn's inner magnetosphere. Io is the source of roughly 1 ton/s of sulfur and oxygen gas at Jupiter. Despite the apparent similarity, the neutral/ion ratio at Saturn is 3 orders of magnitude higher than at Jupiter. We explore the flow of mass and energy at Saturn and Jupiter using a simplified homogeneous physical chemistry model to understand why these two system are so different. Our results suggest that ionization at Saturn is fundamentally limited by the slower corotational flow velocity at Enceladus, resulting in a factor of 4 lower ion pickup temperature. The net result of cooler ions at Enceladus is a cooler thermal electron population (∼2 eV) that is insufficient to generate significant ionization

    Recognizing spontaneous facial expressions of emotion in a small-scale society of Papua New Guinea

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.We report two studies on how residents of Papua New Guinea interpret facial expressions produced spontaneously by other residents of Papua New Guinea. Members of a small-scale indigenous society, Trobrianders (Milne Bay Province; N = 32, 14 to 17 years) were shown 5 facial expressions spontaneously produced by members of another small-scale indigenous society, Fore (Eastern Highlands Province) that Ekman had photographed, labeled, and published in The Face of Man (1980), each as an expression of a basic emotion: happiness, sadness, anger, surprise, and disgust. Trobrianders were asked to use any word they wanted to describe how each person shown felt and to provide valence and arousal ratings. Other Trobrianders (N = 24, 12 to 14 years) were shown the same photographs but asked to choose their response from a short list. In both studies, agreement with Ekman’s predicted labels was low: 0 to 16% and 13 to 38% of observers, respectively

    The fear gasping face as a threat display in a Melanesian society

    Get PDF
    Theory and research showthat humans attribute both emotions and intentions to others on the basis of facial behavior: A gasping face can be seen as showing “fear” and intent to submit. The assumption that such interpretations are pancultural derives largely from Western societies. Here, we report two studies conducted in an indigenous, small-scale Melanesian society with considerable cultural and visual isolation from the West: the Trobrianders of Papua New Guinea. Our multidisciplinary research team spoke the vernacular and had extensive prior fieldwork experience. In study 1, Trobriand adolescents were asked to attribute emotions, social motives, or both to a set of facial displays. Trobrianders showed a mixed and variable attribution pattern, although with much lower agreement than studies of Western samples. Remarkably, the gasping face (traditionally considered a display of fear and submission in the West) was consistently matched to two unpredicted categories: anger and threat. In study 2, adolescents were asked to select the face that was threatening; Trobrianders chose the “fear” gasping face whereas Spaniards chose an “angry” scowling face. Our findings, consistent with functional approaches to animal communication and observations made on threat displays in small-scale societies, challenge the Western assumption that “fear” gasping faces uniformly express fear or signal submission across cultures

    Comparative study of the power transferred from satellite-magnetosphere interactions to auroral emissions

    Get PDF
    Io's interaction with the Jovian magnetosphere generates a power of about 1012 W which propagates as Alfvn waves along the magnetic field lines and is partly transferred to electrons, resulting in intense auroral emissions. A recent study of the power transmission along the Io flux tube and of the electron acceleration at high latitudes showed that the power of the observed emissions is well explained by assuming filamentation of the Alfvn waves in the torus and the acceleration of the electrons at high latitude. At Jupiter, UV footprints related to Europa and Ganymede have also been observed. At Saturn recent observations revealed a weak UV footprint of Enceladus. We apply the Io interaction model to the Europa and Enceladus interactions. We show that the Alfvn wave filamentation leads to a precipitating electron power consistent with the power of the observed UV footprints

    Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy

    Get PDF
    We present what is, to our knowledge, the first experimental demonstration of dielectric constant measurement and quantification of supported lipid bilayers in electrolyte solutions with nanoscale spatial resolution. The dielectric constant was quantitatively reconstructed with finite element calculations by combining thickness information and local polarization forces which were measured using an electrostatic force microscope adapted to work in a liquid environment. Measurements of submicrometric dipalmitoylphosphatidylcholine lipid bilayer patches gave dielectric constants of εr ∼ 3, which are higher than the values typically reported for the hydrophobic part of lipid membranes (εr ∼ 2) and suggest a large contribution of the polar headgroup region to the dielectric response of the lipid bilayer. This work opens apparently new possibilities in the study of biomembrane electrostatics and other bioelectric phenomena

    Generation of parallel electric fields in the Jupiter-Io torus wake region

    Get PDF
    Infrared and ultraviolet images have established that auroral emissions at Jupiter caused by the electromagnetic interaction with Io not only produce a bright spot, but an emission trail that extends in longitude from Io's magnetic footprint. Electron acceleration that produces the bright spot is believed to be dominated by Alfvén waves whereas we argue that the trail or wake aurora results from quasi-static parallel electric fields associated with large-scale, field-aligned currents between the Io torus and Jupiter's ionosphere. These currents ultimately transfer angular momentum from Jupiter to the Io torus. We examine the generation and the impact of the quasi-static parallel electric fields in the Io trail aurora. A critical component to our analysis is a current-voltage relation that accounts for the low-density plasma along the magnetic flux tubes that connect the Io torus and Jupiter. This low-density region, ∼2 Rj from Jupiter's center, can significantly limit the field-aligned current, essentially acting as a "high-latitude current choke." Once parallel electric fields are introduced, the governing equations that couple Jupiter's ionosphere to the Io torus become nonlinear and, while the large-scale behavior is similar to that expected with no parallel electric field, there are substantial deviations on smaller scales. The solutions, bound by properties of the Io torus and Jupiter's ionosphere, indicate that the parallel potentials are on the order of 1 kV when constrained by peak energy fluxes of a few milliwatts per square meter. The parallel potentials that we predict are significantly lower than earlier reports

    Modeling the Enceladus plume--plasma interaction

    Full text link
    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure

    Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction

    Get PDF
    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox®, rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation requirements and the simplicity of the bioassay open the possibility of in-situ water toxicity assessment with a fast and low-cost protocolPostprint (author's final draft
    corecore